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Instabilities of ion motion in a linear Paul trap
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Abstract

We have investigated the stability properties of a linear radio frequency ion trap with cylindrical electrodes. Inside the region of stability for an
ideal trap we found a number of instabilities similar to those experimentally observed in three-dimensional traps. They arise from higher order
contributions to the ideal quadrupole trapping potential. The static potential for axial confinement shifts the radial ion oscillation frequencies and
leads to additional instabilities.
© 2006 Elsevier B.V. All rights reserved.
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. Introduction

Ions stored in ion traps represent nearly ideal systems of study
n a variety of fields in physics. Such fields include precision

easurements of atomic transition frequencies and masses as
ell as the controlled manipulation of quantum states. In recent
ears linear Paul traps have been increasingly used for vari-
us kinds of experiments, ranging from lifetime measurements
f long-lived metastable excited states in ions [1,2], precision
yperfine measurements leading to the development of atomic
locks in the microwave and optical domain [3,4], Coulomb
rystal studies [5–7], or projects which aim to realize quantum
omputing schemes [8,9]. In some of these experiments the trap
s considered as mere container which keeps the ion in place and
etails of the trapping potential and the ion motion are of little
ignificance. In many cases, however, ion cooling to the lowest
ttainable temperatures is required. Then, it is of importance to
eal with effects which may limit the temperature by energy
ick-up from the time-varying electric trapping field.

Linear Paul traps typically consist of four metal rods sym-
etrically arranged as shown in Fig. 1. Two opposing rods are

lectrically connected and a radio-frequency field is applied to
hem, while the remaining two are kept at rf ground. A dc elec-
ric field may also be superimposed. In the radial direction the

electric potential Φ has a quadrupolar shape:

Φ(t, x, y) = (Udc + Uac cos Ωt)
x2 − y2

2r2
0

. (1)

r0 is the distance from the rod surface to the trap center. A par-
ticle with the charge to mass ratio e/m inside this field remains
trapped in the radial direction when the frequency Ω and ampli-
tudes Uac and Udc (applied from pole to ground) of the rf and
dc fields, respectively, are chosen in such a way that the two
so-called stability parameters a and q:

a = 4eUdc

mr2
0Ω

2
, q = − 2eUac

mr2
0Ω

2
(2)

a = ax = −ay, q = qx = −qy fall into a range given by the sta-
bility diagram as shown in Fig. 2. The stability parameters a
and q follow from the equation of motion of a charged parti-
cle in such a time-varying field, i.e., the normalized Mathieu
differential equation:

d2u(τ)

dτ2 + (au − 2qu cos 2τ)u(τ) = 0 (3)

τ = Ωt/2, u = x, y. Solutions of this equation are discussed in

literature [10,11].

Confinement of the particles in the axial direction is provided
b
e
s
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y a static potential at the end of the rods, either by additional
lectrodes or by isolated segments of the main electrodes as
hown in Fig. 1.
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Fig. 1. Linear ion trap setup.

In the case of a single particle, stored in a perfect quadrupolar
trapping potential, the ion’s kinetic energy is determined by the
trapping parameters and the initial conditions and remains con-
stant in time. However, ion-ion collisions in a cloud of trapped
particles, or imperfections in the trapping field may lead to ion
heating and thus require detailed understanding.

The effect of such imperfections of the trapping field on the
confinement properties of ions in a three-dimensional hyperbolic
Paul trap was first reported by Dawson and Whetten [12], while
instabilities of the ion motion in linear quadrupole devices were
first observed as early as 1961 by von Busch and Paul in a mass
filter [13]. Very detailed investigations on instabilities were later
performed in 3D Paul traps by Alheit et al. [14,15], as well as in
static Penning traps by Paasche et al. [16]. Gudjons et al. [17]
used for the first time laser fluorescence from a stored ion cloud
in a Paul trap to observe nonlinear resonances. Recently Douglas
and Michaud have performed extensive studies of the ion mo-
tion in linear quadrupole mass filters and linear quadrupole ion
traps with higher order contributions added to the quadrupole
potential [18,19]. No observation of instabilities, however, has
been reported in linear Paul traps so far.

Ion loss in certain operating conditions has been observed
as a consequence of excessive ion heating. These conditions are
characterized by the fact that in three-dimensional Paul traps the
axial and radial ion oscillation frequencies in the time-averaged
potential minimum, ω and ω , are related to the driving fre-
q

n

t

trap, operating conditions which lead to a linear dependence of
the ion oscillation frequencies result in particle loss from the
trap [16].

In this article we investigate the effect of trap imperfections
on the stability properties of the linear Paul trap. Similar to the
three-dimensional case we find instabilities in certain regions of
the stability diagram. In addition the influence of the static axial
confining potentials on the stability is investigated.

2. Experiment

Our ion trap consists of four cylindrical segmented rods of
6 mm diameter made from oxygen-free copper. The closest dis-
tance r0 to the center is 2.66 mm. The length of the center seg-
ments is 15 mm, that of the outer ones 13 mm. The trap is driven
by a radio frequency field at a frequency Ω/2π = 2 MHz and
variable amplitude. For axial confinement a voltage UEND is ap-
plied to the end caps with respect to the center segments. The
trap is enclosed in a vacuum vessel at a base pressure of a few
10−10 mbar.

Our experiments are performed using singly ionized Ca. Ions
are created by electro-ionisation of an atomic beam inside the
trapping volume. Care has been taken to shield the trap elec-
trodes from contamination with neutral Ca since this would pro-
duce imperfections in the trapping field by contact potentials.
The 4S1/2–4P1/2 resonance transition of Ca+ at 397 nm (Fig. 3)
is excited by light from a frequency doubled c.w. Ti:Sa laser and
the fluorescence at the same wavelength is observed. To prevent
ions from being trapped in the long-lived metastable 3D3/2 state,
into which the excited 4P1/2 state may decay, we used a diode
laser at 866 nm resonantly tuned to this transition for repump-
ing. The two lasers were overlapped and aligned along the z-axis
into the trap. The waist of the beam at the trap center was about
200 �m. Both lasers were stabilized against frequency drifts.

The blue laser light is tuned slightly below resonance to pro-
vide Doppler cooling of the ions. At sufficient laser power the
ions’ temperature, T, is reduced to a value where the Coulomb
coupling parameter, Γ , defined as the ratio of the Coulomb in-
teraction energy to the thermal energy:

Γ = 1

aW

q2

4πε0

1

kBT
(5)

becomes larger than 173. aW is the mean inter-ion distance and
kB the Boltzmann constant. Then the ions form crystalline struc-

Fig. 3. Relevant 40Ca+ level scheme.
z r

uency, Ω, of the traps by

rωr + nzωz = Ω (4)

The integers nr and nz are related to higher order contribu-
ions to the quadrupolar trapping field. Similarly in the Penning

Fig. 2. Stability diagram for an ideal linear Paul trap.
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Fig. 4. Spatially resolved observation of four ions as a cloud and as a crystallized
structure.

tures [20] which arrange themselves symmetrically around the
trap center [7,21,22]. In the case of a few ions they form a linear
string along the trap axis with individual ions spatially resolved
when using a CCD camera for fluorescence detection (Fig. 4).

We found that for our investigations on instabilities it was
easier to monitor the total fluorescence from the trapped ions
with a photomultiplier rather than observing the behavior of
ion crystals. We therefore set the laser detuning and power to
such values that the ion cloud was cooled but not crystallized
and integrated the fluorescence for 500 ms at each data point.
Typical ion numbers were around 10 which resulted in a detected
fluorescence count rate of about 4000 s−1. The ion fluorescence
was monitored at different operating parameters of the linear
trap. To this end, either the rf amplitude of the driving field was
set to a given value (corresponding to a certain value of the
stability parameter q) while the dc voltage, corresponding to the
stability parameter a, was scanned across the trap or vice versa.

In order to determine the values of a and q, at which nonlinear
resonances occur, it was not sufficient to measure the amplitude
of the applied voltages since the uncertainty might be rather
large, particularly in the amplitude of the 2 MHz rf voltage. In-
stead we measured the motional eigenfrequencies of the ions in
the trap potential in the neighbourhood of the nonlinear reso-
nances. According to the solution of the Mathieu equation of
motion they are related to the stability parameters a and q by

ω

u

β

which for |au, qu| � 1 can be approximated by β2
u = au +

(q2
u/2).

3. Results

For certain combinations of a and q a decrease in the fluo-
rescence count rate was observed as shown in Fig. 5. This is
the result of an expansion of the ion cloud when it gains en-
ergy from the trapping field due to nonlinearities in the trapping
potential as will be outlined below. The shape and amplitude
of these nonlinear resonances depend on the direction of the
voltage scan (see Fig. 6). As is clear from Figs. 5 and 6 the
ions were not lost from the trap when passing through a reso-
nance. The width of the resonances is typically in the range of
� a, � q � 10−4. Depending on the value of the storage param-
eter this results in relative linewidths of about � a/a ≤ 10−3,
� q/q ≤ 10−3, respectively.

We measure the motional frequencies by application of
an additional weak radio frequency field applied to the trap
electrodes in a dipolar way. When we scan the frequency
ω of this field we can resonantly excite the ions’ mo-
tion. It results in a decrease of the observed fluorescence

Fig. 5. Observed minima in the fluorescence count rate at different values of the
stability parameter a (q = 0.425).

Fig. 6. Shape and amplitude of a nonlinear resonance for a large number of ions
(n � 100) as function of scan direction (q = 0.472).
u,n =
∣∣∣∣n + βu(qu, au)

2

∣∣∣∣ Ω (6)

= x, y, n = 0, 1, 2, . . . and βu is a function of au, qu [10,11]:

2
u = au + q2

u

(2 + βu)2 − au − q2
u

(4+βu)2−au−···

+ q2
u

(2 − βu)2 − au − q2
u

(4−βu)2−au−···
(7)
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Fig. 7. Radial (left) and axial (right) excitation of the secular ion oscillation frequencies. The double structure of the radial excitation arises from different potential
depths in x- and y-direction at a �= 0. In the left picture the stability parameters q = 0.491 and a = 0.003 have been determined from the resonance frequencies. The
axial resonance was measured at q = 0.456 and UEND = 25 V. The two data sets were recorded for different ion numbers.

since the ion cloud expands under excitation. Fig. 7 shows
examples.

The axial oscillation frequency is determined by the dc con-
fining voltage at the outer trap segments UEND. Given that the
distance of these segments from the trap center is 7.5 mm we
can reasonably assume that the potential distribution across the
ion cloud with a typical length of a few 10 �m can be consid-
ered as harmonic in the axial direction. The radial dependence
of this potential follows from Laplace’s equation. Considering
the symmetry of the trap in x- and y-direction we have:

Φax(x, y, z) = κUEND

d2
0

(
z2 − x2 + y2

2

)
(8)

d0 is the distance from the axial trap center to the end electrodes
[23,24]. Here a factor κ is introduced which depends on the
trap’s geometry and can be determined experimentally. The axial
oscillation frequency then is given by

ωz =
√

2κeUEND

md2
0

(9)

The radial components of the axial potential have to be added to
the radial quadrupole potential and lead to modified equations
of motion:

ẍ + e
[

Udc + Uac cos(Ωt)
2 − κUEND

2

]
x(t) = 0,

T
i

When we replace the parameters β in Eq. (6) by new ones
(β̃) considering the change in a by the axial potential we find for
the new fundamental radial oscillation frequencies:

ω̃x = Ω

2
β̃x =

√
ω2

x − 1

2
ω2

z � Ω

2

√
q2

2
+ ax − 1

2
ãz,

ω̃y = Ω

2
β̃y =

√
ω2

y − 1

2
ω2

z � Ω

2

√
q2

2
+ ay − 1

2
ãz,

ωz = Ω

2

√
ãz (12)

As the trapping potential contains higher order potential con-
tributions the excitation resonances are those of a driven an-
harmonic oscillator. Depending on the size and sign of these
contributions they show asymmetries and depend on the fre-
quency scan direction of the excitation field. This is a well-
known behavior and is discussed in detail by Landau and
Lifschitz [25]. Fig. 8 shows an example for one radial reso-
nance. Because of the asymmetry and the directional depen-
dence, accurate determination of the oscillation frequencies is
difficult. We obtain the proper values by measuring the reso-
nances at different excitation amplitudes and extrapolation to
zero field strength. From these values the stability parame-
ters a and q are determined. Also from measurements at dif-
f
c
κ

r
t
c
F

t
t
t
o

m r0 d0

ÿ + e

m

[
−Udc − Uac cos(Ωt)

r2
0

− κUEND

d2
0

]
y(t) = 0 (10)

hey can be cast into the standard Mathieu equation using mod-
fied stability parameters:

ãx = 4eUdc

mr2
0Ω

2
− 4eζUEND

mr2
0Ω

2
, ãy = − 4eUdc

mr2
0Ω

2
− 4eζUEND

mr2
0Ω

2
,

ãz = 8κeUEND

md2
0Ω2

, q = − 2eUac

mr2
0Ω

2
, τ = Ωt

2
, ζ = κr2

0

d2
0

(11)
erent axial potentials the geometrical factor κ (see Eq. (9))
an be determined. For our electrode configuration we obtain
= 0.064.
According to Eq. (12) the axial confining potential shifts the

adial frequencies. In order to verify this we measured the mo-
ional frequencies for a defined radial potential at several end
ap voltages UEND. The expected frequency shift is shown in
ig. 9 and agrees well with the observation.

We examined the effect of the axial potential on the instabili-
ies. To this end we scanned the rf voltage for different axial po-
entials across the stability region while the parameter a was set
o zero. This particular choice of a is due to the reduced number
f resonances expected from theory (see below). Furthermore
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Fig. 8. High resolution scan of one of the radial ion oscillation frequencies
taken at different scan directions and constant excitation amplitude (UEXC =
750 mVp−0). The insert shows the qualitative expectation from a driven anhar-
monic oscillator for an octopole potential contribution following Landau and
Lifschitz [25].

the radial motional frequencies for the x- and the y-directions
then have the same value. Therefore any effect caused by the ax-
ial potential should be clearly evident. In the scanned region we
observed three nonlinear resonances. Their positions q as a func-
tion of the applied axial voltage are shown in Fig. 10. Two of the
resonances ((a) and (c)) shift to higher values of q with increas-
ing axial voltage. They arise from purely radial coupling and can
be assigned to contibutions from an octopole (N = 4) and a do-
decapole (N = 6) potential, respectively. The solid lines in Fig.
10 show the potential dependence according to Eq. (12) and are
in agreement with the experimentally observed shifts. Thus, the
static radial components of the axial potential in effect result in
reduction of the applied radial potential. Here, we would like to
note, that due to the strength of the purely radial coupling reso-

F
f
r
t
s

Fig. 10. Position of the observed nonlinear resonances (N = 4 and 6) as a func-
tion of the applied axial voltage. The purely radial coupling resonances ((a) and
(c)) are shifted by the radial components of the axial potential. In addition a new
instability (at N = 4) which couples to the axial oscillation shows up (b). The
horizontal dashed lines mark the expected q-values for instabilities of the orders
N = 4, 5 and 6 for a linear quadrupole mass filter (see below).

nance for N = 4, the ions were lost from the trap. Because of the
observed narrow linewidths, however, it appears reasonable to
assume the center of the resonance at the position of the ion loss
itself.

In addition we found an instability which shifts to lower val-
ues of q with increasing axial potential (b). It arises from addi-
tional coupling to the axial motion at twice the axial frequency.
This is seen in a comparison of the experimental data with the
calculated positions in q for this kind of coupling (dashed line).

We systematically varied the stability parameters a and q in
a large area of the stability diagram, while the endcap voltages
UEND were kept at a fixed value. This lead to the observation of a
number of fluorescence minima. Their positions in the stability
diagram are shown in Fig. 11.

F
p
B
t

ig. 9. Shift of the radial frequencies by the axial confining potential UEND. The
requencies have been measured for two different radial trapping potentials. The
f amplitude in both cases is Uac = 101 V, while the static voltage Udc was set
o −1 V (�) and −2 V (�), respectively. The lines show the expected frequency
hift for the applied potentials.
ig. 11. Observed minima in the ion density at various values of the stability
arameters a and q of the linear Paul trap at an endcap voltage UEND = 30 V.
elow q = 0.35 no minima could be observed, above q = 0.7 loading of the

rap was not efficient enough.
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4. Discussion

The condition for instabilities of the ion motion in perturbed
trapping potentials has been derived by Wang et al. using per-
turbation theory [26]. It is given for 3D potentials by Eq. (4),
while for 2D potentials it reads:

nxωx + nyωy = Ω (13)

The sum of the integers nx and ny

|nx| + |ny| = N (14)

gives the order of the perturbing potential when it is described
by a series expansion in cylindrical coordinates:

ΦReal(r, φ, t) = U(t)
∞∑

k=0

ck

(
r

r0

)k

cos(k(φ − εk)) (15)

ck denotes the strength of the potential contribution. In principle,
a contribution of the order k can cause nonlinear resonances of
the orders N = k, k − 2, k − 4, . . . However, resonances of a
certain order are mainly caused by the corresponding potential
order. For k = 2 we have the ideal quadrupole potential. The
leading lower terms in Cartesian coordinates are given by

Φ3 = c3

r3
0

(x3 − 3xy2), Φ4 = c4

r4
0

(x4 − 6x2y2 + y4),

Φ5 = c5

r5
0

(x5 − 10x3y2 + 5xy4) (16)

Fig. 12 shows the expected instabilities in the stability diagram
for several higher order contributions.

In Fig. 13 we compare our experimental observations to
the theoretical expectations. The unstable operating points fol-
low closely the calculated lines. The labelling of the lines is
N/nx/ny. Thus we observe instabilities arising from octopole

Fig. 12. Theoretical stability diagram of a linear quadrupole mass filter. Inside
the boundary of the stable region lines are drawn which correspond to expected
instabilities of the ion motion due to perturbing trapping potentials of order N
according to Eqs. (13) and (14). All instabilities arising from a given order N
meet at one point at the q-axis. Shown are instabilities ranging from N = 3
(right) to N = 10 (left).

Fig. 13. Comparison of experimentally observed instabilities to expectations
from Eq. (13) and the modified condition for nonlinear resonances Eq. (17).

(N = 4), dodecapole (N = 6) and hexadecapole (N = 8) per-
turbations. We note that we observe (with the exception of the
(6/3/3) resonance) only instabilities at which one of the integers
nx or ny is 0. The bold lines in Fig. 13 correspond to pure ra-
dial resonances coupled to the trapping field. The normal lines
indicate instabilities where in addition the axial oscillation is
coupled to the radial one. In case of the N = 4 instability we
find also some instabilities which correspond to the coupling of
2ωz to the axial frequency (dotted). As a result the condition for
instabilities in a linear Paul trap, as stated in Eq. (13) has to take
into account the influence of the axial potential and must then
be written as

nxω̃x + nyω̃y = Ω − kzωz, kz = 0, 1, 2, . . . (17)

Some pronounced instabilities occurring near a = 0 and
q = 0.4 could not be assigned. They would correspond approx-
imately to instabilities arising from N = 7 perturbations. The
symmetry of the electrode configuration, however, would allow
only non-zero perturbations for even N.

In order to obtain at least approximate values for the size of
the perturbing higher order potentials we calculated ion trajec-
tories for our geometry using the simulation program SIMION.
From the observed amplitude of the oscillations at different ion
energies we obtained the following values for the coefficients ck

in the series expansion of the potential (normalized to c2 = 1):

c

t
c
d
o
t
c
p

e
m
a

4 = 0.061, c6 = −0.022, c8 = 0.003

These values correspond approximately to the strength of
he observed instabilities of the corresponding orders. However,
alculations for an ideal linear quadrupole mass filter with cylin-
rical electrodes and the same R/r0 = 1.13 ratio (R the radius
f the electrode and r0 the shortest distance from the trap cen-
er to the electrodes) give a value c6 � 0.001 for the hexapole
ontribution, whereas c4 and c8 do not contribute, due to the
otential symmetry [27,28].

The observation of instabilities in the ion motion in a lin-
ar Paul trap follows closely what was expected from detailed
easurements and calculations in three-dimensional Paul traps

s well as early observations in linear Paul mass filters. The
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influence of the static axial confining potential on the radial ion
motion, however, has so far not yet been considered. It shifts the
oscillation frequencies and leads to additional instabilities. This
might be of importance for mass spectrometry using linear Paul
traps if, for example, ions created inside the trap by fragmenta-
tion of parent ions happen to fall into a region of the stability
diagram where instabilities are likely to occur.

One possible application for mass spectrometry in linear Paul
traps is the purification of mass samples resulting from the rela-
tively simple and precise control of the axial potential. By vary-
ing the voltages applied for the axial confinement it is possi-
ble to tune these additional resonances to unwanted masses and
by this concentrate the analyte ions in the sample. In a three-
dimensional Paul trap the removal of unwanted isotopes using
instabilities by variation of the working parameters a and q was
demonstrated first by Alheit [29] and Alt [30].

In experiments on cooled stored ions, nonlinear resonances
may lead to excessive heating and thus may prevent the achieve-
ment of very low temperatures.

The question remains about the origin of the instabilities.
Trap imperfections, as stated above, are generally considered
to be the main source. Calculations [31] show that space charge
effects in Paul traps on the position of ion oscillation frequencies
become significant only when the space charge density is of
the order of 105 cm−3. Since we generally work with small ion
numbers, of the order of 10, we did not originally consider this
to be a detectable contribution to the occurrence of instabilities.
This, however, might not be the case. In one of our runs we
lost some ions from the trap when scanning the voltage across
a nonlinear resonance. We found that the fluorescence count
rate was quantized and could thus determine the trapped ion
number accurately. The decrease of fluorescence at the nonlinear
resonance remained visible until the ion number was reduced to
three and then vanished completely (Fig. 14). This somewhat
surprising observation may be explained by the fact that the
ion cloud was cooled by the red detuned laser light and that at
the smallest ion number a phase transition to a crystallized state

Fig. 14. Nonlinear resonance (N = 6) at small ion numbers. The ion num-
ber (horizontal lines) is derived from the quantized fluorescence count
rate. The multiple peak structure arises from a partially compensated patch
potential (a � 0).

occurred. Our photomultiplier based detection system would not
be able to distinguish between a small ion cloud and a crystal.
A crystal, well aligned along the trap axis, might not feel the
influence of trap imperfections. This question requires further
investigations
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[6] H.C. Nägerl, D. Leibfried, F. Schmidt-Kaler, J. Eschner, R. Blatt, Opt.
Express 3 (1998) 89.

[7] M. Drewsen, C. Brodersen, L. Hornekær, J.S. Hangst, J.P. Schiffer, Phys.

[

[

[
[
[

[

[

[
[

[

[
[

[

[

[

Rev. Lett. 81 (1998) 2878
L. Hornekær, N. Kjærgaard, A.M. Thommesen, M. Drewsen, Phys. Rev.
Lett. 86 (2001) 1994.

[8] D. Leibfried, B. DeMarco, V. Meyer, M. Rowe, A. Ben-Kish, M. Barrett,
J. Britton, J. Hughes, W.M. Itano, B.M. Jelenkovic, C. Langer, D. Lucas,
T. Rosenband, D.J. Wineland, J. Phys. B 36 (2003) 599.
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